Minors

Low complexity networks

4. Sparsity I: Measuring shallow minors

Patrice Ossona de Mendez

Charles University
Praha, Czech Republic

CAMS, CNRS/EHESS
Paris, France

Zhejiang Normal University
Jinhua, China

— IRIF 2020 —
Sparsity I: Measuring shallow Minors
Many kind of minors

<table>
<thead>
<tr>
<th>Minor</th>
<th>Topological minor</th>
<th>Immersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \leq_m G$</td>
<td>$H \leq_t G$</td>
<td>$H \leq_i G$</td>
</tr>
</tbody>
</table>

- $H \leq_m G$: Minor
- $H \leq_t G$: Topological minor
- $H \leq_i G$: Immersion
Minors

- $G \leq_m H$: minor relation
Minors

- $G \leq_m H$: minor relation
 - well quasi order (Robertson, Seymour; ’04)

- $G \leq_t H$: topological minor relation
 - not a well quasi order
 - Hajós' conjecture (false for almost all graphs, but true if large girth)

- $G \leq_i H$: immersion relation
 - well quasi order (Robertson, Seymour; ’10)
 - conjecture of Abu-Khzam and Langston — Lescure and Meyniel (proved for $k \leq 7$, DeVos, Kawarabayashi, Mohar, and Okamura ’09)
Minors

- \(G \leq_m H \): minor relation
 - well quasi order (Robertson, Seymour; ’04)
 - Hadwiger’s conjecture (proved for \(k \leq 6 \) Robertson, Seymour, and Thomas 1993; true for almost all graphs)

- \(G \leq_t H \): topological minor relation
 - not a well quasi order
 - Hajós’ conjecture (false for almost all graphs, but true if large girth)

- \(G \leq_i H \): immersion relation
 - well quasi order (Robertson, Seymour; ’10)
 - conjecture of Abu-Khzam and Langston — Lescure and Meyniel (proved for \(k \leq 7 \), DeVos, Kawarabayashi, Mohar, and Okamura ’09)
Minors

- $G \leq_m H$: minor relation
 - well quasi order (Robertson, Seymour; ’04)
 - Hadwiger’s conjecture (proved for $k \leq 6$ Robertson, Seymour, and Thomas 1993; true for almost all graphs)
- $G \leq_t H$: topological minor relation
• $G \leq_m H$: minor relation
 • well quasi order (Robertson, Seymour; ’04)
 • Hadwiger’s conjecture (proved for $k \leq 6$ Robertson, Seymour, and Thomas 1993; true for almost all graphs)
• $G \leq_t H$: topological minor relation
 • not a well quasi order
Minors

- \(G \leq_m H \): minor relation
 - well quasi order (Robertson, Seymour; ’04)
 - Hadwiger’s conjecture (proved for \(k \leq 6 \) Robertson, Seymour, and Thomas 1993; true for almost all graphs)

- \(G \leq_t H \): topological minor relation
 - not a well quasi order
 - Hajós’ conjecture (false for almost all graphs, but true if large girth)
• $G \leq_m H$: minor relation
 • well quasi order (Robertson, Seymour; ’04)
 • Hadwiger’s conjecture (proved for $k \leq 6$ Robertson, Seymour, and Thomas 1993; true for almost all graphs)

• $G \leq_t H$: topological minor relation
 • not a well quasi order
 • Hajós’ conjecture (false for almost all graphs, but true if large girth)

• $G \leq_i H$: immersion relation
Minors

- \(G \leq_m H \): minor relation
 - well quasi order (Robertson, Seymour; ’04)
 - Hadwiger’s conjecture (proved for \(k \leq 6 \) Robertson, Seymour, and Thomas 1993; true for almost all graphs)
- \(G \leq_t H \): topological minor relation
 - not a well quasi order
 - Hajós’ conjecture (false for almost all graphs, but true if large girth)
- \(G \leq_i H \): immersion relation
 - well quasi order (Robertson, Seymour; ’10)
Minors

- $G \leq_m H$: minor relation
 - well quasi order (Robertson, Seymour; ’04)
 - Hadwiger’s conjecture (proved for $k \leq 6$ Robertson, Seymour, and Thomas 1993; true for almost all graphs)
- $G \leq_t H$: topological minor relation
 - not a well quasi order
 - Hajós’ conjecture (false for almost all graphs, but true if large girth)
- $G \leq_i H$: immersion relation
 - well quasi order (Robertson, Seymour; ’10)
 - conjecture of Abu-Khzam and Langston — Lescure and Meyniel (proved for $k \leq 7$, DeVos, Kawarabayashi, Mohar, and Okamura ’09)
Minors

Minors and minimum degree

Theorem (Komlós and Szemerédi ’94, Bollobás and Thomason ’98)

There exists a constant c such that every graph G with minimum degree at least ck^2 is such that $K_k \leq t G$.

Theorem (Kostochka ’82, Thomason ’84)

There exists a constant $\gamma \approx 0.319$ such that every graph G with minimum degree at least $\gamma k \sqrt{\log(k)}$ is such that $K_k \leq m_G$.

Theorem (Dvořák, Yepremyan ’18)

If a simple graph G has minimum degree $11k + 7$ then $K_k \leq i_G$.
Minors and minimum degree

Theorem (Komlós and Szemerédi ’94, Bollobás and Thomason ’98)

There exists a constant c such that every graph G with minimum degree at least ck^2 is such that $K_k \leq t G$.

Theorem (Kostochka ’82, Thomason ’84)

There exists a constant $\gamma \approx 0.319$ such that every graph G with minimum degree at least $\gamma k \sqrt{\log(k)}$ is such that $K_k \leq m G$.
Minors and minimum degree

Theorem (Komlós and Szemerédi ’94, Bollobás and Thomason ’98)

There exists a constant c such that every graph G with minimum degree at least ck^2 is such that $K_k \leq_t G$.

Theorem (Kostochka ’82, Thomason ’84)

There exists a constant $\gamma \approx 0.319$ such that every graph G with minimum degree at least $\gamma k \sqrt{\log(k)}$ is such that $K_k \leq_m G$.

Theorem (Dvořák, Yepremyan ’18)

If a simple graph G has minimum degree $11k + 7$ then $K_k \leq_i G$.
Shallow minors

Minor

$G \triangleright t$ \supseteq \nrightarrow t$

Topological minor

$G \tilde{\triangleright} t$ \subseteq \nrightarrow 2t$

Immersion

$G \overset{\tilde{\triangleright}}{\supseteq} t$ \subseteq \nrightarrow 2t

\n
\[G \triangleright t \supseteq \mathcal{C} \triangleright t \]

\[G \tilde{\triangleright} t \subseteq \mathcal{C} \tilde{\triangleright} t \]

\[G \overset{\tilde{\triangleright}}{\supseteq} t \subseteq \mathcal{C} \overset{\tilde{\triangleright}}{\supseteq} t \]
Graph invariants

\[\text{mad}(G) + 1 \geq \text{col}(G) \geq \chi(G) \geq \chi_f(G) \geq \rho(G) \geq \omega(G). \]

Maximum average degree \(\text{mad}(G) = \max_{H \subseteq G} \overline{d}(H) \)

Coloring number \(\text{col}(G) = 1 + \max_{H \subseteq G} \delta(H) \)

Chromatic number \(\chi(G) \)

Fractional chromatic number \(\chi_f(G) = \inf \left\{ \frac{a}{b} \left| G \rightarrow KG_{a,b} \right. \right\} \)

Hall ratio \(\rho(G) = \max_{H \subseteq G} |H|/\alpha(H) \)

Clique number \(\omega(G) \)
Density and chromatic number of 1-subdivisions

Lemma (Dvořák, ’07)

Let \(c \geq 4 \) be an integer and let \(G \) be a graph with minimum degree \(d > 56(c - 1)^2 \frac{\log(c-1)}{\log c - \log(c-1)} \). Then the graph \(G \) contains a subgraph \(G' \) that is the 1-subdivision of a graph with chromatic number \(c \).
Density and chromatic number of 1-subdivisions

Lemma (Dvořák, ’07)

Let $c \geq 4$ be an integer and let G be a graph with minimum degree $d > 56(c - 1)^2 \frac{\log(c-1)}{\log c - \log(c-1)}$. Then the graph G contains a subgraph G' that is the 1-subdivision of a graph with chromatic number c.

Theorem (Dvořák, Ossona de Mendez, Wu ’19+)

For every $c \geq 10$, every graph of average degree at least $256c^3$ contains the 1-subdivision of a graph of fractional chromatic number at least c.
Class Taxonomy

Definition

A class \mathcal{C} has **bounded expansion** if there exists a function $f : \mathbb{N} \to \mathbb{R}$ such that

$$\forall r \in \mathbb{N} \quad \sup \{ \bar{d}(G) \mid G \in \mathcal{C} \triangleleft r \} \leq f(r).$$

Definition

A class \mathcal{C} is **nowhere dense** if there exists a function $f : \mathbb{N} \to \mathbb{R}$ such that

$$\forall r \in \mathbb{N} \quad \sup \{ \omega(G) \mid G \in \mathcal{C} \lhd r \} \leq f(r).$$
Examples

• Graphs with maximum degree 100

• Planar graphs

• Random graphs $G(n, d/n)$
Examples

• Graphs with maximum degree 100
 Bounded expansion: $\bar{d}(C \ominus t) < 100^t$

• Planar graphs

• Random graphs $G(n, d/n)$
Examples

- Graphs with maximum degree 100
 Bounded expansion: $\overline{d}(C \triangleright t) < 100^t$

- Planar graphs
 Bounded expansion: $\overline{d}(C \triangleright t) < 6$ (Euler)

- Random graphs $G(n, d/n)$
Examples

• Graphs with maximum degree 100
 Bounded expansion: $\overline{d}(\mathcal{C} \triangle t) < 100^t$

• Planar graphs
 Bounded expansion: $\overline{d}(\mathcal{C} \triangle t) < 6$ (Euler)

• Random graphs $G(n, d/n)$
 \exists bounded expansion class \mathcal{R}_d s.t. $G(n, d/n) \in \mathcal{R}_d$ a.a.s.
Class Taxonomy

<table>
<thead>
<tr>
<th></th>
<th>\overline{d}</th>
<th>χ</th>
<th>χ_f</th>
<th>ρ</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minors</td>
<td>BE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topological minors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>Immersions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Class Taxonomy

<table>
<thead>
<tr>
<th></th>
<th>\bar{d}</th>
<th>χ</th>
<th>χ_f</th>
<th>ρ</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minors</td>
<td>BE</td>
<td>BE</td>
<td>BE</td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>Topological minors</td>
<td>BE</td>
<td>BE</td>
<td>BE</td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>Immersions</td>
<td>BE</td>
<td>BE</td>
<td>BE</td>
<td></td>
<td>ND</td>
</tr>
</tbody>
</table>
Class Taxonomy

<table>
<thead>
<tr>
<th></th>
<th>\vec{d}</th>
<th>χ</th>
<th>χ_f</th>
<th>ρ</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minors</td>
<td>BE</td>
<td>BE</td>
<td>BE</td>
<td>???</td>
<td>ND</td>
</tr>
<tr>
<td>Topological minors</td>
<td>BE</td>
<td>BE</td>
<td>BE</td>
<td>???</td>
<td>ND</td>
</tr>
<tr>
<td>Immersions</td>
<td>BE</td>
<td>BE</td>
<td>BE</td>
<td>???</td>
<td>ND</td>
</tr>
</tbody>
</table>
More Examples

• Class of G without cycles of length $\leq 10^{10^{10}}$

• Class of G such that $\Delta(G) \leq f(\text{girth}(G))$

• Class of G with $\|G\| > |G|^{1+\epsilon}$
More Examples

- Class of G without cycles of length $\leq 10^{10^{10}}$
 Somewhere dense: $10^{10^{10}}$-subdivisions of K_n

- Class of G such that $\Delta(G) \leq f(girth(G))$

- Class of G with $\|G\| > |G|^{1+\epsilon}$
More Examples

- Class of G without cycles of length $\leq 10^{10^{10}}$
 Somewhere dense: $10^{10^{10}}$-subdivisions of K_n

- Class of G such that $\Delta(G) \leq f(\text{girth}(G))$
 Nowhere dense: $\omega(G \overline{\Delta} t) \leq f(6t)$

- Class of G with $\|G\| > |G|^{1+\epsilon}$
More Examples

• Class of G without cycles of length $\leq 10^{10^{10}}$
 Somewhere dense: $10^{10^{10}}$-subdivisions of K_n

• Class of G such that $\Delta(G) \leq f(\text{girth}(G))$
 Nowhere dense: $\omega(G \tilde{\nabla} t) \leq f(6t)$

• Class of G with $\|G\| > |G|^{1+\epsilon}$
 Somewhere dense: $\supseteq 8/\epsilon$-subdivisions of K_n
Erdős-Rényi random graphs

Theorem (Nešetril, Ossona de Mendez, Wood ’12; Nešetril, Ossona de Mendez ’17+)

• If \(p(n) \approx d/n \), there exists a bounded expansion class \(R_d \) such that \(G(n, p(n)) \in R_d \) a.a.s.

• If \(p(n) \ll n^{-1+\epsilon} \) for every \(\epsilon > 0 \), there exists a nowhere dense class \(C \) such that \(G(n, p(n)) \in C \) a.a.s.

• If \(p(n) \gtrsim n^{-1+\epsilon} \) (for some \(\epsilon > 0 \)), then \(G(n, p(n)) \) a.a.s. contains an \(O(1/\epsilon) \)-subdivision of arbitrarily large complete graphs.
• **Configuration Model** and the **Chung-Lu Model** with specified asymptotic degree sequences

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Degree Sequence</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power law</td>
<td>$d^{-\gamma}$</td>
<td>$\gamma > 2$</td>
</tr>
<tr>
<td>Power law w/ cutoff</td>
<td>$d^{-\gamma}e^{-\lambda d}$</td>
<td>$\gamma > 2, \lambda > 0$</td>
</tr>
<tr>
<td>Exponential</td>
<td>$e^{-\lambda d}$</td>
<td>$\lambda > 0$</td>
</tr>
<tr>
<td>Stretched exponential</td>
<td>$d^{\beta-1}e^{-\lambda d\beta}$</td>
<td>$\lambda, \beta > 0$</td>
</tr>
<tr>
<td>Gaussian</td>
<td>$\exp(-\frac{(d-\mu)^2}{2\sigma^2})$</td>
<td>μ, σ</td>
</tr>
<tr>
<td>Log-normal</td>
<td>$d^{-1}\exp(-\frac{(\log d-\mu)^2}{2\sigma^2})$</td>
<td>μ, σ</td>
</tr>
</tbody>
</table>

• generalization of **Erdős-Rényi graphs** (perturbed bounded-degree graphs), which includes the stochastic block model with small probabilities.
Unavoidable subgraphs

\textbf{Theorem (Erdős, Simonovits, Stone)}

\[
\text{ex}(n, H) = \left(1 - \frac{1}{\chi(H) - 1} \right) \binom{n}{2} + o(n^2).
\]
Unavoidable subgraphs

Theorem (Erdős, Simonovits, Stone)

$$\text{ex}(n, H) = \left(1 - \frac{1}{\chi(H) - 1}\right) \binom{n}{2} + o(n^2).$$

Theorem (Jiang, Seiver ’12)

Let F be a subdivision of a graph H, where each edge is subdivided by an even number of vertices (at least $2m$). Then

$$\text{ex}(n, F) = O(n^{1+\frac{8}{m}}).$$
Minors

Concentration

Theorem (Jiang, Seiver ’12)

\[\text{ex}(n, K_t^{(\leq p)}) = O(n^{1+\frac{8}{p}}). \]

\[C \subseteq C \gtrsim 0 \subseteq \ldots \subseteq C \gtrsim t \subseteq \ldots \subseteq C \gtrsim \frac{8t}{\epsilon} \subseteq \ldots \subseteq C \gtrsim \infty \]

\[\|G\| > C_t |G|^{1+\epsilon} \]

Hence:

\[\limsup_{G \in C \gtrsim t} \frac{\log \|G\|}{\log |G|} > 1 + \epsilon \implies \limsup_{G \in C \gtrsim \frac{8t}{\epsilon}} \frac{\log \|G\|}{\log |G|} = 2. \]
Classification by logarithmic density

Theorem (Nešetřil, Ossona de Mendez)

Let \mathcal{C} be an infinite class of graphs. Then

$$\sup_t \limsup_{G \in \mathcal{C}} \frac{\log \|G\|}{\log |G|} \in \{-\infty, 0, 1, 2\}.$$

• **bounded size class** $\iff -\infty$ or 0;
• **nowhere dense class** $\iff -\infty, 0$ or 1;
• **somewhere dense class** $\iff 2$.

Minors
Exercise

Prove that a class \mathcal{C} has bounded expansion if and only if there exists a function f such that

$$\forall r \in \mathbb{N} \ \forall G \in \mathcal{C} \setminus r \quad \chi_f(G) \leq f(r).$$