Low complexity networks

2. First-order Logic

Patrice OSSONA DE MENDEZ

Charles University
Praha, Czech Republic

CAMS, CNRS/EHESS
Paris, France

Zhejiang Normal University
Jinhua, China

— IRIF 2020 —
First-order logic
Relational Structures

• Relational structures generalize graphs and directed graphs, ...
Relational Structures

- Relational structures generalize graphs and directed graphs,...
- First order logic generalize subgraphs, homomorphisms from a template,...
 \rightarrow local properties
Relational Structures

- Relational structures generalize graphs and directed graphs, ...
- First order logic generalize subgraphs, homomorphisms from a template, ...
 → local properties
- Monadic second order logic generalize minors, colorings, homomorphisms to a template, ...
 → global properties
Relational Structures

- **Relational vocabulary** σ: finite set of symbols with arity. A σ-structure A: a universe (or domain) A, and an interpretation $R \in \sigma \mapsto R^A \subseteq A^r$.
Relational Structures

- **Relational vocabulary** σ: finite set of symbols with arity.

 A σ-structure A: a universe (or *domain*) A, and an interpretation $R \in \sigma \mapsto R^A \subseteq A^r$.

- B is a *substructure* of A if $B \subseteq A$ and $R^B \subseteq R^A$;

 B is an *induced substructure* of A if $R^B = R^A \cap B^r$.

Relational Structures

- **Relational vocabulary** σ: finite set of symbols with arity. A σ-structure A: a universe (or domain) A, and an interpretation $R \in \sigma \mapsto R^A \subseteq A^r$.

- B is a substructure of A if $B \subseteq A$ and $R^B \subseteq R^A$; B is an induced substructure of A if $R^B = R^A \cap B^r$.

- A homomorphism $A \to B$ is a mapping $f : A \to B$ such that:

 $$(x_1, \ldots, x_k) \in R^A \quad \Rightarrow \quad (f(x_1), \ldots, f(x_k)) \in R^B.$$

 The class (category) of all finite σ-structures is denoted by $\text{Rel}(\sigma)$, at most countable σ-structures by $\text{Rel}_\omega(\sigma)$.
First-Order Logic

- atomic formulas, Boolean formulas, existential first-order formulas, first-order formulas.
First-Order Logic

- **atomic formulas, Boolean formulas, existential first-order formulas, first-order formulas.**

- The *quantifier count* $\text{qcount}(\phi)$ of ϕ is the total number of quantifiers in ϕ.

- The *quantifier rank* $\text{qrank}(\phi)$ of ϕ is the maximum nesting of quantifiers of its sub-formulas.
• **atomic formulas, Boolean formulas, existential first-order formulas, first-order formulas.**

• The **quantifier count** $q\text{count}(\phi)$ of ϕ is the total number of quantifiers in ϕ.

• The **quantifier rank** $q\text{rank}(\phi)$ of ϕ is the maximum nesting of quantifiers of its sub-formulas.

For a formula $\phi[x_1, \ldots, x_n]$ with free variables x_1, \ldots, x_n,

$$A \models \phi[a_1, \ldots, a_n] \iff \phi \text{ is true in } A \text{ when } x_i \leftarrow a_i.$$
Example: $\operatorname{dist}(x, y) \leq d$

- **Naive approach**

 $$(\exists v_0, \ldots, v_d) \ (x = v_0) \land \left[\bigwedge_{i=0}^{d-1} E(v_i, v_{i+1}) \lor (v_i = v_{i+1}) \right] \land (v_d = y).$$

 $\rightarrow \operatorname{qrank} \approx d.$
Example: $\text{dist}(x, y) \leq d$

- **Naive approach**

 $$(\exists v_0, \ldots, v_d) \ (x = v_0) \land \left[\bigwedge_{i=0}^{d-1} E(v_i, v_{i+1}) \lor (v_i = v_{i+1}) \right] \land (v_d = y).$$

 \rightarrow qrank $\approx d$.

- **Binary search approach**

 $$\delta_d(x, y) := \begin{cases} E(x, y) \lor (x = y) & \text{if } d = 1, \\ (\exists z) \ \delta_{\lfloor d/2 \rfloor}(x, z) \land \delta_{\lceil d/2 \rceil}(z, y) & \text{otherwise.} \end{cases}$$

 \rightarrow qrank $\approx \log d$.
Theories and Models

Definition

A *theory* T is a set of sentences,

a *model* M of a theory T is a structure where all the sentences in T are satisfied: $M \models T$.

Theorem (Gödel completeness theorem)

A sentence θ can be proved in a theory T (i.e. $T \vdash \theta$) if and only if every model of T satisfies θ (i.e. $T \models \theta$).

Theorem (Henkin)

Every consistent theory has a model.
0 \mathbf{-} 1 \text{ law}

Definition

$G(n, p(n))$ satisfies a 0 \mathbf{-} 1 \text{ law} \text{ (for first-order logic)} if every first-order property is either false or true a.a.s.
0 – 1 law

Definition

$G(n, p(n))$ satisfies a 0 – 1 law (for first-order logic) if every first-order property is either false or true a.a.s.

Theorem (Glebskii, Kogan, Liogon’ki, Talanov ’69; Fagin ’76)

$G(n, 1/2)$ satisfies the 0 – 1 law for first-order logic.
Definition

\(G(n, p(n)) \) satisfies a 0 – 1 law (for first-order logic) if every first-order property is either false or true a.a.s.

Theorem (Glebskii, Kogan, Liogon’ki, Talanov ’69; Fagin ’76)

\(G(n, 1/2) \) satisfies the 0 – 1 law for first-order logic.

Theorem (Shelah, Spencer ’88)

If \(p(n) = n^{-\alpha} \) then \(G(n, p(n)) \) satisfies a 0 – 1 law for first-order logic if and only if \(\alpha \) is an irrational number.
Ehrenfeucht-Fraïssé games

Ehrenfeucht-Fraïssé game $\mathcal{E}_n(G, H)$: players Spoiler and Duplicator, played as follows:

- Start with $A_0 = B_0 = \emptyset$ and let π_0 be the empty mapping from A to B.
Ehrenfeucht-Fraïssé games

Ehrenfeucht-Fraïssé game $\mathcal{E}_n(G, H)$: players Spoiler and Duplicator, played as follows:

- Start with $A_0 = B_0 = \emptyset$ and let π_0 be the empty mapping from A to B.
- For each $1 \leq i \leq n$, Spoiler picks either a vertex a in G or a vertex b in H.

Ehrenfeucht-Fraïssé games

Ehrenfeucht-Fraïssé game $\mathcal{E}_n(G, H)$: players Spoiler and Duplicator, played as follows:

- Start with $A_0 = B_0 = \emptyset$ and let π_0 be the empty mapping from A to B.
- For each $1 \leq i \leq n$, Spoiler picks either a vertex a in G or a vertex b in H.
 - In the first case, the Duplicator chooses a vertex b in H;
 - If no isomorphism $\pi_i : G[A_i] \rightarrow G[B_i]$ extending π_{i-1} exists such that $\pi_i(a) = b$ then Spoiler wins the game.
 - If there is an isomorphism $\pi_i : G[A_i] \rightarrow G[B_i]$ extending π_{i-1} then the game continues until $i = n$. If i reaches n and π_n is an isomorphism from $G[A_n]$ to $H[B_n]$ then Duplicator wins the game.
Ehrenfeucht-Fraïssé games

Ehrenfeucht-Fraïssé game \(\mathcal{E}_n(G, H) \): players Spoiler and Duplicator, played as follows:

- Start with \(A_0 = B_0 = \emptyset \) and let \(\pi_0 \) be the empty mapping from \(A \) to \(B \).
- For each \(1 \leq i \leq n \), Spoiler picks either a vertex \(a \) in \(G \) or a vertex \(b \) in \(H \).
 - In the first case, the Duplicator chooses a vertex \(b \) in \(H \);
 - in the second case he chooses a vertex \(a \) in \(G \).
Ehrenfeucht-Fraïssé games

\textit{Ehrenfeucht-Fraïssé game} \(\varnothing_n(G, H) \): players Spoiler and Duplicator, played as follows:

- Start with \(A_0 = B_0 = \emptyset \) and let \(\pi_0 \) be the empty mapping from \(A \) to \(B \).
- For each \(1 \leq i \leq n \), Spoiler picks either a vertex \(a \) in \(G \) or a vertex \(b \) in \(H \).
 - In the first case, the Duplicator chooses a vertex \(b \) in \(H \);
 - in the second case he chooses a vertex \(a \) in \(G \).
- Let \(A_i = A_{i-1} \cup \{a\} \) and \(B_i = B_{i-1} \cup \{b\} \);
Ehrenfeucht-Fraïssé games

Ehrenfeucht-Fraïssé game $\mathcal{E}_n(G,H)$: players Spoiler and Duplicator, played as follows:

- Start with $A_0 = B_0 = \emptyset$ and let π_0 be the empty mapping from A to B.
- For each $1 \leq i \leq n$, Spoiler picks either a vertex a in G or a vertex b in H.
 - In the first case, the Duplicator chooses a vertex b in H;
 - in the second case he chooses a vertex a in G.
- Let $A_i = A_{i-1} \cup \{a\}$ and $B_i = B_{i-1} \cup \{b\}$;
 - If no isomorphism $\pi_i : G[A_i] \to G[B_i]$ extending π_{i-1} exists such that $\pi(a) = b$ then Spoiler wins the game.
Ehrenfeucht-Fraïssé games

Ehrenfeucht-Fraïssé game $\mathcal{E}_n(G, H)$: players Spoiler and Duplicator, played as follows:

- Start with $A_0 = B_0 = \emptyset$ and let π_0 be the empty mapping from A to B.
- For each $1 \leq i \leq n$, Spoiler picks either a vertex a in G or a vertex b in H.
 - In the first case, the Duplicator chooses a vertex b in H;
 - in the second case he chooses a vertex a in G.
- Let $A_i = A_{i-1} \cup \{a\}$ and $B_i = B_{i-1} \cup \{b\}$;
 - If no isomorphism $\pi_i : G[A_i] \rightarrow G[B_i]$ extending π_{i-1} exists such that $\pi(a) = b$ then Spoiler wins the game.
 - If there is an isomorphism $\pi_i : G[A_i] \rightarrow G[B_i]$ extending π_{i-1} then the game continues until $i = n$. If i reaches n and π_n is an isomorphism from $G[A_n]$ to $H[B_n]$ then Duplicator wins the game.
Back and Forth Equivalence

If Duplicator has a winning strategy for n then G and H are n-back and forth equivalent.
Back and Forth Equivalence

If Duplicator has a winning strategy for n then G and H are n-back and forth equivalent.

Theorem (Fraïssé, Ehrenfeucht)

Two graphs (and more generally two structures) are n-back and forth equivalent if and only if they satisfy the same first order sentences of quantifier rank n (denoted by $G \equiv_n H$).
If Duplicator has a winning strategy for \(n \) then \(G \) and \(H \) are \(n \)-back and forth equivalent.

Theorem (Fraïssé, Ehrenfeucht)

Two graphs (and more generally two structures) are \(n \)-back and forth equivalent if and only if they satisfy the same first order sentences of quantifier rank \(n \) (denoted by \(G \equiv_n H \)).

Definition

Two \(\sigma \)-structures \(A \) and \(B \) are *elementarily equivalent*, noted \(A \equiv B \) if they satisfy the same first-order \(\sigma \)-sentences, that is if \(A \equiv_n B \) for every \(n \).
Remark

Two \textbf{finite} elementary equivalent structures are isomorphic, but it is not usually the case for infinite structures.
Elementary Equivalence

Remark
Two finite elementary equivalent structures are isomorphic, but it is not usually the case for infinite structures.

\[
\begin{align*}
\cdots & \\
\equiv & \\
\cdots & \\
\end{align*}
\]

Exercise
Prove that “there exists a path linking \(x \) and \(y \)” is not expressible by a first-order formula.
Locality

Definition

A formula ϕ with free variables x_1, \ldots, x_p is r-local if, for every G and every $v_1, \ldots, v_p \in G$ we have

$$G \models \phi(v_1, \ldots, v_p) \iff G\left[\bigcup_{i=1}^{p} N^r_G[v_i]\right] \models \phi(v_1, \ldots, v_p).$$

Example

- any quantifier-free formula;
Locality

Definition

A formula ϕ with free variables x_1, \ldots, x_p is r-local if, for every G and every $v_1, \ldots, v_p \in G$ we have

$$G \models \phi(v_1, \ldots, v_p) \iff G \left[\bigcup_{i=1}^{p} N^r_G[v_i] \right] \models \phi(v_1, \ldots, v_p).$$

Example

- any quantifier-free formula;
- the distance between v_1 and v_2 is at most 10;
Locality

Definition

A formula ϕ with free variables x_1, \ldots, x_p is *r-local* if, for every G and every $v_1, \ldots, v_p \in G$ we have

$$G \models \phi(v_1, \ldots, v_p) \iff G\left[\bigcup_{i=1}^{p} N^r_G[v_i]\right] \models \phi(v_1, \ldots, v_p).$$

Example

- any quantifier-free formula;
- the distance between v_1 and v_2 is at most 10;
- the distance between v_1 and v_2 is at least 10.
Gaifman Locality

Theorem (Gaifman 1982)

Every first-order formula $\psi(x_1, \ldots, x_n)$ is equivalent to a Boolean combination of t-local formulas $\chi(x_{i_1}, \ldots, x_{i_s})$ and basic local sentences of the form

$$\exists y_1 \ldots y_m \left(\bigwedge_{i=1}^{m} \phi(y_i) \land \bigwedge_{1 \leq i < j \leq m} \text{dist}(y_i, y_j) > 2r \right)$$

where ϕ is r-local. Furthermore $r \leq 7^{\text{qrank}(\psi)-1}$, $t \leq 7^{\text{qrank}(\psi)-1}/2$, $m \leq n + \text{qrank}(\psi)$, and, if ψ is a sentence, only basic local sentences occur in the Boolean combination.
Exercises

Definition

A graph G has the \textit{n-extension property} if for every disjoint subsets A_0 and A_1 of G with $|A_0| + |A_1| \leq n$ we have:

$$\exists v \notin A_0 \cup A_1 \ (\forall u \in A_0 \ E(u, v) = 0) \land (\forall u \in A_1 \ E(u, v) = 1).$$

Exercise

If G_1 and G_2 have the \textit{n-extension property} then $G_1 \equiv_n G_2$.

Exercise (Quantifier elimination)

For every ϕ with t free variables and $\text{qrank}(\phi) = r$ there exists quantifier free q s.t. $\forall G$ with $(t + r - 1)$-extension property we have $G \models \phi \iff q$.